favoritar161177
Resumo: A inteligência artificial não busca somente entender mas construir entidades inteligentes. A inteligência pode ser dividida em vários fatores e um deles é conhecido como aprendizado. A área de aprendizado de máquina visa o desenvolvimento de técnicas para aprendizado automático de máquinas, que incluem computadores, robôs ou qualquer outro dispositivo. Entre essas técnicas encontra-se o Aprendizado por Reforço, foco principal deste trabalho. Mais especificamente, o aprendizado por reforço relacional (ARR) foi investigado, que representa na forma relacional o aprendizado obtido através da interação direta com o ambiente. O ARR é bem interessante no campo de robótica, pois, em geral, não se dispôe do modelo do ambiente e se requer econômia de recursos utilizados. A técnica ARR foi investigada dentro do contexto de aprendizado de uma cabeça robótica. Uma modificação no algoritmo ARR foi proposta, denominada por ETG, e incorporada em uma arquitetura de controle de uma cabeça robótica. A arquitetura foi avaliada no contexto de um problema real não trivial: o aprendizado da atenção compartilhada. Os resultados obtidos mostram que a arquitetura é capaz de exibir comportamentos apropriados durante uma interação social controlada, através da utilização do ETG. Uma análise comparativa com outros métodos foi realizada que mostram que o algoritmo proposto conseguiu obter um desempenho superior na maioria dos experimentos realizados
Aprendizado por reforço relacional para o controle de robô ...
Silva, Renato Ramos da
favoritar159354
Resumo: Um aspecto importante da interação humana é a atenção compartilhada. Ela é um processo de comunicação onde uma pessoa redireciona a sua atenção para um objeto ou evento e a outra pessoa ou pessoas seguem o seu olhar para o mesmo lugar. O processo é finalizado com a pessoa que segue a atenção realizando um apontamento sobre o objeto e um comentário sobre a situação. Esta habilidade importante é aprendida por nós durante o período da infância e hoje, alguns pesquisadores em robótica estão tentando desenvolver arquiteturas robóticas para aprender essa habilidade em robôs. Deste modo, o laboratório de aprendizado de robôs está trabalhando em uma arquitetura robótica para esse fim. Ela é composta por três módulos, percepção de estímulo, controle de consequência e emissão de resposta. Esta arquitetura robótica foi avaliada no controle de uma cabeça robótica e foi capaz de aprender a seguir o olhar e identificar alguns objetos. No entanto, todos esses módulos têm algumas limitações. A fim de ter uma melhor interação entre um robô e um humano e reduzir os efeitos das limitações, algumas melhorias foram desenvolvidas. Entre elas incluem um novo algoritmo de classificação das posições da cabeça através do histograma de gradiente orientado, inserir novas funcionalidades (definidas como reflexos) ao módulo de controle de consequência e novos algoritmos de aprendizado para selecionar a melhor ação. Todas as modificações realizadas reduziram as limitações e pode melhorar as interações entre um robô e um ser humano
Aperfeiçoamento de uma arquitetura para robótica social
Silva, Renato Ramos da